Quest for Mathematics I (E2): Exercise sheet 1 solutions

1. (a)
$$\left(\frac{3n}{n+3}\right)^2 = \left(\frac{3}{1+3n^{-1}}\right)^2 \to 3^2 = 9$$

(b)
$$(\sqrt{n+2} + \sqrt{n})(\sqrt{n+1} - \sqrt{n}) = \frac{\sqrt{n+2} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{\sqrt{1+2n^{-1}} + \sqrt{1}}{\sqrt{1+n^{-1}} + \sqrt{1}} \to 1$$

(c)
$$5^n - 3^n = 5^n (1 - (3/5)^n) \to \infty$$
, since $5^n \to \infty$ and $1 - (3/5)^n \to 1$

(d) On one hand, $(5^n-3^n)^{1/n}=5(1-(3/5)^n)^{1/n}\leq 5$. On the other, if $x\in (0,1)$ and $n\geq 1$, then $x^n\leq x$, which implies $x\leq x^{1/n}$. It follows that $(5^n-3^n)^{1/n}=5(1-(3/5)^n)^{1/n}\geq 5(1-(3/5)^n)\to 5$. Hence, combining the two results using the sandwich theorem gives $(5^n-3^n)^{1/n}\to 5$.

(e)
$$\frac{n!}{2^n} = \frac{1}{2} \times \frac{2}{2} \times \dots \times \frac{n}{2} \ge \frac{1}{2} \times \frac{2}{2} \times \left(\frac{3}{2}\right)^{n-2} = \frac{2}{9} \times \left(\frac{3}{2}\right)^n \to \infty$$

- 2. If r = 1, then the limit is 0. If $r \in (-1, 1)$, then the limit is 1. If |r| > 1, then the limit is -1.
- 3. Consider $b_n = a_n 8$. This satisfies $b_{n+1} = \frac{3}{4}b_n$. In particular, b_n is a geometric sequence with ratio in the interval (-1,1). So, $b_n \to 0$. It follows that $a_n \to 8$.
- 4. First, observe that, since $\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = f$ for some f > 0, the algebra of limits gives $\lim_{n\to\infty} \frac{F_{n-1}}{F_n} = \frac{1}{f}$. Now, dividing the given equation by F_n (the sequence is clearly increasing, and so $F_n \neq 0$) yields

$$\frac{F_{n+1}}{F_n} = 1 + \frac{F_{n-1}}{F_n}.$$

Taking limits in this equation thus gives that f must satisfy

$$f = 1 + \frac{1}{f}.$$

Rearranging gives $f^2 - f - 1 = 0$, which has roots $f = \frac{1 \pm \sqrt{5}}{2}$. Only $f = \frac{1 + \sqrt{5}}{2}$ satisfies f > 0, and so this must be the solution we are looking for.