
Quest for Mathematics I (E2): Exercise sheet 1 solutions
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(c) 5n − 3n = 5n(1− (3/5)n) → ∞, since 5n → ∞ and 1− (3/5)n → 1

(d) On one hand, (5n − 3n)1/n = 5(1 − (3/5)n)1/n ≤ 5. On the other, if x ∈ (0, 1)
and n ≥ 1, then xn ≤ x, which implies x ≤ x1/n. It follows that (5n − 3n)1/n =
5(1 − (3/5)n)1/n ≥ 5(1 − (3/5)n) → 5. Hence, combining the two results using the
sandwich theorem gives (5n − 3n)1/n → 5.
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2. If r = 1, then the limit is 0. If r ∈ (−1, 1), then the limit is 1. If |r| > 1, then the limit is
−1.

3. Consider bn = an − 8. This satisfies bn+1 =
3
4bn. In particular, bn is a geometric sequence

with ratio in the interval (−1, 1). So, bn → 0. It follows that an → 8.

4. First, observe that, since limn→∞
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= f for some f > 0, the algebra of limits gives
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f . Now, dividing the given equation by Fn (the sequence is clearly
increasing, and so Fn ̸= 0) yields
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Taking limits in this equation thus gives that f must satisfy
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1

f
.

Rearranging gives f2 − f − 1 = 0, which has roots f = 1±
√
5

2 . Only f = 1+
√
5

2 satisfies
f > 0, and so this must be the solution we are looking for.

1


